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Abstract

Graded materials are multiphase composites with continuously varying thermophysical properties. The concept
provides material scientists and engineers with an important tool to develop new materials tailored for some specific
applications. One such application of this new class of materials is as top coats or interfacial regions in thermal barrier
systems. A widely observed failure mode in these layered materials is known to be interfacial cracking that leads to
spallation. In many cases it is the buckling instability of coating under mechanically or thermally induced compressive
stresses that triggers spallation. Under in-plane loading since the linear elastic small deformation theory gives only a
trivial solution, in this study the plane strain interface crack problem for a graded coating bonded to a homogeneous
substrate is formulated by using a kinematically nonlinear continuum theory. Both the instability and the postbuckling
problems are considered. The main objective of the study is the investigation of the influence of material nonhomo-
geneity, kinematic nonlinearity and plate approximation on the critical instability load and on such fracture mechanics
parameters as strain energy release rate, stress intensity factors and crack opening displacements.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A common failure mode in thermal barrier and a variety of other coatings is known to be interface
cracking that leads to spallation. Depending on the relative values of thermal expansion coefficients of the
coating and the substrate and the nature of the mechanical loading applied to the system, the in-plane
stresses in the coating may be tensile or compressive, invariably cyclic. In the case of tensile stresses the
fracture mechanism is rather straightforward: initiation of microcracks on the coating surface, subcritical
growth of a dominant crack through the coating, and formation and growth of a T-shaped crack along the
coating-substrate interface. On the other hand, particularly in the case of ceramic coatings, the spallation
fracture appears to be due to in-plane cyclic compression (Evans and Hutchinson, 1984). The process starts
by the formation and coalescence of microcracks at or near the interface asperities under cyclic loading
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(Evans et al., 1997; Nusier and Newaz, 1998; Evans et al., 1983). Thus, as a consequence of a fully formed
interface crack or a highly weakened interface the coating buckles or blisters under a peak compressive load
(e.g., Chai et al., 1983; Bottega and Maewal, 1983; Peck and Springer, 1991; Hutchinson and Suo, 1992;
Garg, 1988). In the past the studies dealing with the postbuckling analysis of coatings and thin films as well
as with the determination of buckling instability load were carried out by using an appropriate plate theory
and certain assumptions regarding the boundary conditions. A number of studies have also been carried
out on buckling instability for embedded cracks within the context of two dimensional continuum (Keer
et al., 1982; Wang et al., 1991; Wang and Takao, 1995; Madenci and Westmann, 1991). Because of the
nonlinear nature of the problem finite element methods have also been used rather extensively in investi-
gating the general problem of buckling and delamination growth in coating/substrate systems (e.g., Nilsson
and Giannakopoulos, 1990; Nilsson et al., 1993; Whitcomb, 1989).

In the process of interface crack growth leading to spallation fracture, at first the crack is driven sub-
critically in a co-planar fashion. Then, upon reaching the critical condition at the crack tip a mixed-mode
fracture occurs, exposing the interface to an undesirable thermal or chemical environment. In most studies
on the subject the objective, therefore, has been the evaluation of the crack driving force for a given in-
terface crack and a thermomechanical loading system. For in-plane compression since the infinitesimal
theory of elasticity would give only a trivial solution (that is, no crack opening) the problem must be treated
by using a kinematically nonlinear theory (Chiu, 2000). In previous studies involving buckling instability
and postbuckling analysis the underlying mechanics problems have been solved by using the von Karman
plate theory and by assuming that the layered medium is piecewise homogeneous (e.g., Hutchinson and
Suo, 1992). This so-called buckle-driven delamination has also been considered by Bao and Cai (1997) for a
graded coating bonded to a semi-infinite homogeneous substrate and containing a crack parallel to the
interface. The related postbuckling problem for the plate with graded properties was solved by using the
technique described by Hutchinson and Suo (1992). ' Coatings designed to protect the substrate against
severe thermal and chemical environments are invariably ceramics. In such applications ceramics, however,
seem to have certain undesirable properties, namely brittleness, poor bonding strength and high residual
and thermal stresses. They are, therefore, highly susceptible to cracking and spallation. An alternative
concept that may be used to overcome some of these shortcomings of the homogeneous ceramic coatings
appears to be the through-thickness grading of the thermophysical properties of coatings (Miyamoto et al.,
1999). Graded materials, also known as functionally graded materials (FGMs), are generally two phase
composites with continuously varying volume fractions or compositions. Used as coatings and interfacial
zones they tend to reduce stresses resulting from the material property mismatch, increase the bonding
strength, improve the surface properties and provide protection against adverse thermal and chemical
environments. Thus the concept provides the material scientists and engineers with an important tool to
design new materials for some specific applications. For a comprehensive review of the design, processing
and applications of graded materials and for extensive references (see Yamanouchi et al., 1990; Holt et al.,
1993; Ilschner and Cherradi, 1995; Shiota and Miyamoto, 1997; Kaysser, 1999; Trumble et al., 2001).

Aside from some useful physical properties mentioned above, the graded materials have also certain
analytical advantages, that is, by eliminating material property discontinuities some well known mathe-
matical anomalies associated with the bonded dissimilar materials are also eliminated. These are the
complex singularities for the interface cracks, nonsquare-root singularities for cracks terminating at the
interfaces and weak power singularities at the points of intersection of free surfaces and interfaces. Thus, in
studying the fracture mechanics of graded materials by using, for example, a standard finite element
procedure, the calculation of the strain energy release rate and the stress intensity factors becomes quite
straightforward.

! At the request of the reviewer and for completeness the technique is also briefly outlined in an Appendix A to this article.
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Fig. 1. Graded coating bonded to a homogeneous substrate with an interface crack subjected to uniform compressive strain.

Despite the fact that the concept of material property grading is relatively new, it has a wide range of
potentially very useful and technologically very important applications. Following are some of these appli-
cations the feasibility of which has been demonstrated: high temperature resistant coatings; coatings on load
transfer components (e.g., gears, bearings and other contacting elements); impact-resistant surface layers;
interfacial zones with high bonding strength; thermoelectric cells with improved thermal efficiency; and
graded index optical glass and polymer fibers for high speed data transmission (mostly in local area networks).

2. Description of the problem

In actual applications such as gas turbines, combustion chambers and high speed civil transport, the
thermal barrier system consists of a ceramic top coat (the primary heat shield), a very thin layer of ther-
mally grown oxide which developes during operation and a bond coat deposited over the substrate to
prevent oxygen diffusion. Also the debonded region is most likely circular or elliptic. In this study we
consider a somewhat idealized version of the problem which is shown in Fig. 1. It is assumed that the
dimensions of the substrate are very large in comparison with the coating thickness /4 and the length 2a of
the interface crack. Thus, the plane strain problem under consideration consists of a graded coating bonded
to a homogeneous, isotropic semi-infinite substrate. The composite medium is subjected to remote in-plane
(fixed-grip) compression

€1xx(:FOO,J’) = —€, —o00<y< 07 Em(:FOO,y) = —¢€p, 0< y< hv (l)

where the subscripts 1 and 2 refer to materials 1 (substrate) and 2 (coating), respectively. In previous studies
it was shown that the influence of the variation in Poisson’s ratio v for crack problems in graded materials is
rather insignificant (Delale and Erdogan, 1988; Chen and Erdogan, 1996) and v may be assumed to be
constant throughout the medium. It is further assumed that the material nonhomogeneity in the coating
may be expressed by

() =me”, 0<y<h, (2)

where 4, is the shear modulus of the substrate which is constant and the dimensionless parameter y# is the
measure of material nonhomogeneity.

2 The phrase functionally graded material (FGM) and the underlying concept were first proposed by M. Niino and the first
successful manufacture of a graded material (superalloy/ceramic for high temperature resistance) was described by Niino et al. (1987).
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Again from Fig. 1 observing that the solution given by the linear continuum modeling of the medium is of
no physical consequence, in this study the problems of buckling instability and postbuckling analysis need to
be treated by using a kinematically nonlinear continuum model. The main objectives of this study are, then,
(i) to examine the limitations of the plate approximation by comparing the results obtained from the von
Karman plate theory and the nonlinear elasticity, (ii) to investigate the influence of the material property
grading in the coating on the stress intensity factors, the strain energy release rate, the crack opening dis-
placement and the buckling instability load, and (iii) to carry out the necessary postbuckling analysis.

3. The buckling instability problem for graded coatings
3.1. The formulation

In the absence of body forces the equations of finite deformation theory of elasticity may be expressed as
(e.g., Malvern, 1969)

a3y + (otix) ; = 0, (3)

(04 + ojpuig)n; = T, (4)

where u;, g;;, T;, and n;, (i,7) = (1,2,3), are, respectively, the components of the displacement, second
Piola—Kirchhoff stress, surface traction and unit normal vector. Note that (3) and (4) are referenced to a
fixed Cartesian coordinate system under the Lagrangian description of deformations. The Green-Lagrange
strains are then given by

€y = 5y + wji + ey ). ¥

For the stability analysis (3)—(5) may be reduced to a linearized set of equations by using a standard
perturbation technique (or the adjacent equilibrium concept). It is assumed that at bifurcation a critical
equilibrium configuration exists which in the sequel is denoted by the superscript (0). The displacements,
stresses, tractions and strains for an adjacent or buckled configuration may then be expressed as follows:

u, = MSO) + u?, i = 0-1(]0) + a; ]11 = TI(O) + ];*, €j = 61(10) + € (6a*d)

ij? i
where the asterisk denotes the perturbation or a small deviation from the critical equilibrium configuration.

Thus, by substituting from (6) into (3)—(5) and neglecting the higher order terms we obtain the following
system of linear equations

X 0 *
0t (O-j('k)uik),j =0, (7)
(0} + ouim, =T, ®)
0y T O3 Ui )Ny i
¢ = %(”1*, +uj,). 9)

For the plane strain problem described by Fig. 1, the in-plane strain ¢ is the only applied load in terms of
which the initial equilibrium state at bifurcation is found to be

3—k; 81,
0 —€, a(o? =0, ‘75,8)); =0, Y — 0, 0 — (K )eo, Gg;) = —T'u_‘:ol (i=1,2),
(10a—f)

where i = 1,2 refer to materials 1 (the substrate) and 2 (the coating), respectively, and x = 3-4v. By using
the kinematic relations (9), the Hooke’s law
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o = K+ 1 - 3—«k B}
o e ) Hoe k1)1

. [3-K\ ., k+1Y\ | (11a—c)
ny— (K_1>:u6xx+ (K— 1>,Ll€yy,

and the relations expressing the material nonhomogeneity

:ui(y) = :ui()eyiya i=172, (12)

from (7) it may be shown that

o%ur ur %t our  ov* K—1 u
1 ] _ 1 i 2 ] 0. _ 1 i i _ LA | — 1 2
(K+ ) axz +(K ) ayz + axay+))t(’c )(ay + ax> 8(K+1>€0 ze 07 l <
o*v* o*v* o%u’ ou* ot K—1 o*v*
—1)— Dt 42—+ 9,(3— Lty )-8 — oo = =1,2
(K ) ze +(K+ ) ayz + axay+/l(3 K) ax +VI(K+ ) ay 8<K+1)60 axz 05 l <
(13a,b)

where ptg = thy = U1, ¥; =0, 7, =7y, and u; and v; are the x and y components of the displacement, the
subscript i = 1, 2 representing the materials 1 and 2. The equilibrium equations (13) must be solved under
the following boundary and continuity conditions:

05, (X, h) =0, 05 (x,h) =0, —00 < x < 00, (14a,b)
05, (%, +0) = a7, (x, =0), a5, (x,+0) = o7 (x, =0), —00 < x < 00, (15a,b)
), (x,=0) =0, 4, (x,—0) =0, —a<x<a, (16a,b)
ui(x, —0) = u5(x,+0), vj(x,—0) = v3(x,+0), |x| > a. (17a,b)

From (13) it may be seen that for y = 0 the problem reduces to a stability problem for a homogeneous half
plane with a crack parallel to its boundary. Similarly, for ¢y = 0 we obtain the standard equations clas-
tostatics for a nonhomogeneous medium. It should be emphasized that in the problem under consideration
both the differential equation (13) and the boundary conditions (14)-(17) are homogeneous. Thus, the
system constitutes a typical eigenvalue problem of the form
L(u) = AN (u) (18)

subject to appropriate homogeneous boundary conditions where u# and 4 represent the displacements and
the applied load ¢, respectively. Thus, aside from a null solution Egs. (13)—(17) would admit a nonzero
solution only for a discrete set of eigenvalues €y, i = 1,2,..., the lowest nonzero eigenvalue being the
critical load (e),,.

To determine (¢),, and the fracture mechanics parameters we simply proceed with the solution of the
mixed boundary value problem formulated by (13)-(17). By using the standard Fourier transforms, for the
substrate (i = 1) from (13) we obtain



7160 T.-C. Chiu, F. Erdogan | International Journal of Solids and Structures 40 (2003) 7155-7179

1 o0 o
l/lﬁlF (x7y) = % / (Aleily —|—Aze”‘”’)em doc,
- (19a,b)

1 o /12 :
* _ i A eily 7A e).zy el(lx d ,
vi(x,y) n /_OO (1&1 €7 + w2 ) o

172 .
Iy = (1— il ) o, 1= |1 Da
Kk+1 (k+1)

1/2
o, (20a,b)

where 4; and A4, are unknown functions of o. Similarly, for the graded coating (Eq. (13), i = 2) we find

oo 4
i) =5 [ Glaereds,
0 k=1
1 c 4

(21a,b)
U;(X,y) = % [m ;mk(rx)Ck(a)enwemda,
where Cy, ..., C, are unknown, ny, ..., n4 are the roots of the characteristic equation resulting from (13) and
are found to be
2 I T 2 _
nlz_z_ /—+OCZ I_SLOZ + o aZ (860)4_y2<3 K>7
2 \4 G (k+1) K+ 1
2 I T 2 _
}’l2:—z— /——I—OCZ 1— 8K€02 N (860)4—"))2(3 K)7
2 4 (k+1) (k+1) K+ 1
_ — (22a-d)
7 12 8ice (8¢0)’ (3 —K )
ny=—=+ 4=+ |1l —— | +ay/o? —? ,
T2\ 4 | (k+ 1) \/ e T \kt1
v 8kep | (8€0)? (3—x>
ng=—=+ | =+ |1l ——= | —oy/o? —y?
T2\ 4 | (k+ 1) \/ TE AT

and the coefficients my, ..., my are given by
—ial? 3
mi(a) = iaf2m + 73 = ©)) L k=1,....4 (23)
(k4 1)n? + y(x+ Dy — [(K —1) - 8(%)50} o2

Four of the six unknowns 4;, (j = 1,2) and Cy, (k= 1,...,4) may be eliminated by substituting from (9),
(11), (19) and (21) into the homogeneous conditions (14) and (15). The remaining two unknowns may then
be determined from the mixed boundary conditions (16) and (17).

3.2. The integral equations

By defining the following unknown functions

Si) = 853 +0) = vi(x, ~O)],

folo) = ey, +0) ~ i x, ~0)],

—00 <x <00 (24a,b)
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and from (17) observing that
fix) =0, fi(x)=0,  [x|>a, (25a,b)

after somewhat lengthy but straightforward manipulations and after performing the necessary asymptotic
analysis, the mixed boundary conditions (16) and (17) may be reduced to

t—x

a 2 5
% / Z [D,éu + ki (x, t)}f,(z)dt =0, i=12, x| <a, (26)
e ‘5

where k;;(x,t), (i,j = 1,2) are known functions (see Chiu (2000) for complete details and extensive results)
and the constants D; and D, are given by

1/2
<1 8¢, >‘/2 |8k e / <1 4e, >2
k+1 (k+ 1) K+ 1
Dl: ]/2 b
460 _8(K—1)€0
et (e 1)° (27a,b)
1/2
<1 8¢, >‘/2 |8k Doy / <1 4ey >2
K+1 (k+1) K+ 1
D, = .

460 860 172
1 ——
K+ 1 K+ 1

From the definition (24) and conditions (17) it follows that the integral equations (26) must be solved under
the following single-valuedness conditions

/af,-(t)dt:07 i=1,2. (28)

It should again be observed that in the instability problem under consideration the integral equations (26)
as well as the auxiliary conditions (28) are homogeneous and normally f; = 0 and f, = 0 would be the only
solution. However, the kernels in (26) are very complicated functions of the variable loading parameter ¢,.
The problem is, therefore, an eigenvalue problem and for certain discrete set of positive values of ¢, it may
admit nonzero solutions.

3.3. The problem of highly damaged interface

The forgoing analysis is based on the assumption that a through crack exists along the x axis
(—a<x<a, y=0, Fig. 1). In some cases, however, one may have only a highly weakened interfacial
region rather than complete rupture. The damaged region may be modeled as a series of small interface
cracks separated by weak unbroken ligaments shown in Fig. 2. In the model adopted in this study it is
assumed that the ligaments may be represented by a pair of tension and shear springs. Thus, the problem of
a series of small collinear cracks may be replaced by that of a macroscopic crack (—a < x < a, y = 0) the
surfaces of which are connected by springs with continuously distributed coefficients s; and s, (Fig. 2).
From Figs. 1 and 2 it may be seen that in the highly damaged interface problem the Egs. (13), (14), (15) and
(17) are still valid, but (16) must be replaced by a pair of conditions that account for the crack surface
bridging effect. For simplicity here it will be assumed that the bridging stresses are proportional to the
relative crack openings, that is the springs are assumed to be linear. Thus, the conditions that replace (16)
become
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Fig. 2. (a) Graded coating bonded to a homogeneous substrate with a weakened interfacial region subjected to uniform compressive
strain. (b) Tension and shear springs modeling crack surface ligaments.

x| < a, (29a,b)

where s, and s, are known constants. From (17) and (24) the crack opening displacements may be expressed
as

vy(x, +0) — v (x, —0) / fi(n)de, x| < a,
(30a,b)

1 (x, +0) — w1 (x, —0) /f2 dr, | <a.

Noting that in the problem (29a) and (29b) are the crack surface tractions, taking into account (29) and
(30), the integral equations (26) will have to be modified as

m Z{Dé’q—kuxt]f, —s [ =0, i=12 K <a S

Egs. (31), too, must be solved under the single-valuedness conditions (28). We again observe that both (31)
and (28) are homogeneous and consequently the system constitutes an eigenvalue problem.

It should be noted that as long as the “applied load” ¢, is less than a critical value (¢),, the crack
surfaces remain closed. The springs s; and s, that provide the crack surface bridging are assumed to be
linear. Consequently the eigenvalue problem formulated by (31) and (28) remains to be also linear. The
problem becomes nonlinear during the postbuckling phase of the loading ¢ > (¢).. The eigenvalue
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problem becomes also nonlinear if the bridging forces applied by the ligaments are modeled in a physically
more realistic manner (see, for example, Erdogan and Joseph (1989)).

3.4. On the solution of integral equations

To solve the integral equations (26) and (31), first the following normalized quantities are defined

s=t/a, r=x/a, -1 < (s,7) <1, (32)
Fi(s) = fi(t), Ky(r,s) = aky(x,1), ij=1,2. (33)
Egs. (26), (31) and (28) then become
D;
“‘/ Z[ 5”+K,jrs)] (s)ds=0, i=12 —-1<r<]l, (34)
M 1 2 D5 r
;] [1 /Z: [S'_';—!—Kij(r,s)]Fj(s)ds—as;/lE(s)dSZ 0, i=12 —-l<r<l, (35)
1
/ Fi(s)ds=0, i=1,2. (36)
-1
It may easily be shown that the index of (34) and (35) is +1 and their solutions are of the form
gi(s) .
F(s) = , —l<s<l1, i=1,2 37
()= (37)

The bounded unknown functions g;(s) and g»(s) are Holder-continuous and g;(—1) # 0, g;(+1) #0,i =1,
2. These functions can be expressed in terms of infinite series of orthogonal polynomials associated with the
weight function (1 —s*)~"/? (in this case the Chebyshev polynomials of the first kind T,(s), n =0,1,...).
Truncating the series and considering the following symmetry properties of 7,,, v; and u;

Fi(s) = —Fi(=s), F(s) = F(-s), (38)

Tz,,,l(S) = —Tz,,,l(—S), Tz,,(S) = Tz,,(—S)7 n = O7 17 e (39)

the unknown functions F; and F>, may be approximated as follows:

Fi(s) m ZB,szn | (40)
B(s) = \/leEEZBNH,TZ,,(s). (41)

From the orthogonality conditions of T,(s) it follows that (40) and (41) satisfy the single-valuedness
conditions (36) identically. The unknown coefficients B,, n = 1,...,2N, may then be determined by sub-
stituting from (40) and (41) into the integral equations (34) or (35). Thus, by using the relations
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0, k=0, || <1,
Uk_l(l"), k>07 |I"|<17
1/' Ty (s)ds k
- LA N AT (42)
r—EVr
TJo(s—r)V1—s2 _( ’ ) L k=0, >,
(4vr=T)
1
Ti(s) o
y mlog|s—r|ds-—;Tk(r), k=1, (43)
1
Ti(s) |s—r] 2 5
=z V- >
[1mS—VdS kUk,l(r) 11—, k=1 (44)

to regularize the integrals involving Cauchy and logarithmic singularities and the discontinuous behavior in
the kernels and by performing the remaining integrals, the singular integral equations (34) and (35) may be
reduced to a functional equation of the form

2N
ZGj(V, 60)Bj =0. (45)
j=1

In (42) and (44) U, (r) is the Chebyshev polynomial of the second kind. We again note that in (34) and (35)
D; and K;; are functions of the variable load parameter ¢). Consequently the coefficients G; and through
which B; and the original unknown functions f; and f; are also functions of €. Eq. (45) may be solved for
B; by using a standard weighted residual technique. For example, using a collocation technique, (45) may
be reduced to

N
ZC‘U-(GQ)B_/ = 0, C,:]'(Go) = Gj(l"i,Eo), = 1,,2N (46)
J=1
Aside from the trivial solution B; =0, j =1,...,2N, a nonzero solution of (46) exists for values of ¢
satisfying
lcii(e0)] =0 (i,j=1,...,2N). (47)

The smallest positive root of (47) ¢, is the critical instability load ()., and the corresponding eigenvector
B,; would give the fundamental buckling mode.

3.5. Crack opening displacements and stress intensity factors

After determining B; from (30a), (30b), (40) and (41) the crack opening displacements may be evaluated
as follows:

N Uz/c,z(X/a)
v2(x, +0) — v (x, —0) = 728”‘2](7_1 a—x* |x[<a,

(48a,b)
- Uy 1(x/a)
ur(x, +0) — uy (x, —0) = —ZBN%i a’—x2, x| <a.

It should be noted that the eigenvectors B; obtained from the homogeneous system (47) are determinate
within an arbitrary multiplicative constant. Consequently (48) gives only the relative shape rather than the
actual value of the crack opening.
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Table 1
On the convergence of the calculated instability load (¢),, and phase angle y(a), v = 0.3 (Fig. 1)
N hj/a=0.05 yh=0 hja=0.3, yh = —2.3026
(€0)er V(a) (degree) (€0)er Y(a) (degree)
2 0.001916 -25.52 0.04027 -37.82
4 0.001906 -37.30 0.03672 —42.15
8 0.001921 -39.12 0.03671 -42.36
16 0.001921 -39.07 0.03671 -42.37
32 0.001921 -39.07 0.03671 -42.39

Similarly by using (42) and by observing that (26a) and (26b) represent o; (x,0) and o (x,0) outside
(|x| > a) as well as within (|x| < a) the crack, the stress intensity factors may be evaluated as

N
Ki(a) = }Clir; V2n(x —a)a (x,0) = —,ulDl\/TaZBj = Ki(—a),
o (49a, b)

N

Ku(a) = lim /2n(x — a)0},(x,0) = = Dyy/ma ¥ By.; = —Ku(—a).

x—a
J=1

Again, because of the arbitrariness in the magnitude of the eigenvector B, at ) = ()., only the relative
values of the stress intensity factors can be evaluated. This means that the phase angle y(a) which defines
the mode mixity may be evaluated exactly:

Y(a) = tan™! II?II((;Z)) =tan™' <D2 iBNH/Dl EN;B/> (50)

Once N is prescribed, using iteration (47) can be solved for ¢, within any desired degree of accuracy.
Table 1 shows some results that give an idea about the convergence of the calculated quantities, in this case
the instability load (e),, and the phase angle y(a). The results are obtained for a homogeneous half plane
(yh = 0) * with a crack parallel to the boundary and for a graded coating (y4 = —2.3026 or u,()/u;, = 0.1)
with an interface crack. The convergence seems to be very good. For as small as N = 8 (a total of 16
unknown coefficients), the results appear to be quite accurate.

4. The postbuckling analysis

From the physics of the problem it is clear that as long as the applied load ¢, is below the critical value
(€0),,> the crack will remain closed and the stress intensity factors and the strain energy release rate will be
zero. The problems of interest in this study are, then, the determination of (e), and the postbuckling
analysis. The instability problem for a graded coating was considered in the previous section. To complete
the fracture mechanics problem and to model such phenomena as subcritical crack growth and crack
branching, the nonlinear postbuckling analysis also needs to be carried out. In this study this is done by
using a finite element method based on the code FRAC2D (Kaya and Nied, 1993). The modified code uses
special nonhomogeneous enriched 12-noded quadrilateral and 10-noded triangular cubic elements for the
crack tip region which makes it possible to calculate the stress intensity factors directly. The “enriched”

3 See (Chiu, 2000), Appendix H for the solution of the half plane problem where the kernels ki; of the integral equations (26) are
obtained in closed form, simplifying the problem quite considerably.
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Fig. 3. Schematic description of the element assignment around the crack tip: E, enriched element; 7, transition element and N, regular
nonlinear element.

finite element method includes the effect of crack tip singularity in the conventional finite element dis-
placement formulation. For the rest of the composite medium geometrically nonlinear nonhomogeneous
12-noded quadrilateral and 10-noded triangular cubic isoparametric elements are used. The nonhomo-
geneity is accounted for by prescribing the thermomechanical material constants at the Gaussian
integration points. One important issue in integrating enriched and nonlinear finite elements is the inter-
element compatibility between these two types of elements which can be handled by introducing a layer of
transition elements and a zeroing function (Fig. 3). Thus, the general form of the components of the
displacement vector within the jth element may be expressed as

M I M M ]

ulj:ZNkulfj+Z K[ <f‘1]_ZNkflk/> +K[] (g]j—Zng/fl> y (51a)
=1 L =1 =1 i
M i M M ]

sz = ZN"uSJ + VA K] <f2j — ZNkfzk]> —‘rK“ <g2j — Zng§]> 3 (Slb)
k=1 I k=1 k=1 i

where uf - and u’gj are the nodal point displacements, N, is the appropriate interpolation function, M is
the number of nodes, K; and Kj; are the modes I and II stress intensity factors, f;; and g;; correspond to the
asymptotic expressions for the displacements near the crack tip and Z is the zeroing function. * The
function Z is defined in such a way that Z = 1 in the enriched elements, is a linear function in the transition
elements and Z = 0 for the remaining nonlinear elements (Fig. 3). Similarly, to overcome the incompati-
bility in the strain-displacement relations and to attain better computational convergence it is also assumed
that

€rs = 3ty + ttg, + (1 = Dug i), (kyr,s) = (1,2). (52)

In (51) the unknowns are 2M nodal point displacements and two stress intensity factors K; and Kj;. For
example, for a 12-noded quadrilateral element there are 26 unknowns.

The postbuckling problem under consideration is nonlinear and is solved by using an incremental-
iterative procedure. That is, instead of applying the full amount of the external load in one step, a series of
smaller load increments are applied. For each load increment an approximate solution is obtained by re-
ferring all variables to a previously known equilibrium configuration and by linearizing the resulting
equations. The solution is then improved by iteration (see Chiu, 2000 for details).

#1In (51) the subscripts 1 and 2 refer to the x and y components of the corresponding quantities.
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5. Results and discussion
5.1. The instability problem

Some sample results for the instability problem described in Fig. 1 and obtained by following the
procedure outlined in Section 3 are given in Figs. 4-12. In all the examples discussed in this section the
Poisson’s ratio is assumed to be 0.3. The hypothetical nonhomogeneity parameters y4 used in the examples
correspond to the material stiffness parameter as follows (Fig. 1):

yh = 3.0 — p,(h)/p; = 20.09,

yh = 2.3026 — w,(h)/p, = 10,

vh = —2.3026 — y(h)/p; = 0.1,
vh = —=3.0 = p,(h)/p; = 0.04979,

0.10 - ' ' '
— =0
— — Yh=-23026
Lo vh = 2.3026 |
/
5 4
> 0.05 |- 7 |
5 /-
7
7
0.00 T, oa
0.0 02 0.4 06

h/a

Fig. 4. Instability strain (), as a function of A/a.

0.024 . T . T . T
"""" Plate Model
8 Continuum Model
0.016 |- B
s L
L
0.008 |- —
0.000 . ‘ . L . L .
-4 -2 0 2 4

Fig. 5. Instability strain ()., as a function of coating nonhomogeneity yA.



7168 T.-C. Chiu, F. Erdogan | International Journal of Solids and Structures 40 (2003) 7155-7179

150 —————————
)
g
g
~£ 100 .
w
=
% ]
i
& 50t .
z
Qc 4
O 1 L 1 L 1 L L L 1
0.00 0.25 0.50

h/a

Fig. 6. The difference between the instability strain predicted by plate approximation (ep) and that by continuum model (¢) as

a function of %/a.
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Fig. 7. Normalized crack opening displacements for y2 = —2.3026, dv(x,0) = v5(x, +0) — vy (x, —0).

where 1, (v) = u, exp(yy) (Fig. 1). Since y4 = 0 could not be substituted in the nonhomogeneous analysis
due to numerical difficulties, also considered in calculations were the case of y4 = 0.0001 in the nonhomo-
geneous program and yh = 0, the homogeneous half plane which was obtained independently (Chiu,
2000). This was done partly to verify the accuracy of the nonhomogeneous analysis and the related nu-
merical procedure. The calculated values of the critical strain (¢),, and the phase angle (a) (at the crack
tip x = +a) for y4 =0.0001 and y# = 0 are shown in Table 2. For a very wide range of the geometric
stiffness constant //a, the two sets of results are seen to be identical. °

5 Table 2 indicates that the mode II stress intensity factor is negative. Since the material is homogeneous, Kj; < 0 implies that the
crack will grow toward the less stiff medium or the free surface.
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Fig. 8. Normalized crack opening displacements for yh = —2.3026, du(x, 0) = us(x, +0) — u; (x, —0).
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Fig. 9. Normalized crack opening displacements for #/a = 0.3, v(x,0) = v,(x, +0) — v1(x, —0).

The calculated critical strain (¢)),, is shown in Fig. 4 as a function of geometric stiffness parameter //a. It
is seen that (e),, is a monotonically increasing function of //a and properly approaches zero as //a goes to
zero. ¢ The figure also shows that regardless of the nature of coating nonhomogeneity, for all values of & /a
the homogeneous medium requires a greater instability load to initiate buckling. Intuitively one would
expect that the critical loads for y# > 0 and yh < 0 would bracket ()., for 2 =0. The fact that this
argument would be very misleading may be seen from Fig. 5 which shows the influence of material non-
homogeneity on the buckling strain (¢)),, for #/a = 0.05, 0.1 and 0.15. Also shown in Fig. 5 is the critical
strain obtained from the plate theory (see the Appendix A for closed form solution). The plate theory shows
that (¢),, for the plate is an even function of y4 and becomes maximum at y4 = 0. The critical strain given
by the continuum theory shows the same trend as that given by the plate theory except that the maximum is

% In the case of plate approximation, near /a = 0, (e),, ~ (h/a)* (sec Hutchinson and Suo, 1992 and the Appendix A).
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Fig. 10. Normalized crack opening displacements for #/a = 0.3, du(x,0) = uy(x, +0) — u; (x, —0).
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Fig. 11. Phase angle y/(a) for the interface crack at buckling instability as a function of 4/a.

slightly shifted toward negative y4. ’ Note that for very small values of //a, as expected, the results ob-
tained from plate and continuum theories are indistinguishable, whereas for greater values of 4/a the
difference could be very significant. Also, for all values of #/a and yh the plate theory predicts consistently
higher values for critical strain. For y4 = 0 this may also be seen from Fig. 6 which shows the difference
between the critical strains calculated from the continuum and the plate models. The difference may be
attributed to the fact that at x = Fa the plate is assumed to have built-in ends (that is, ends with artificially
imposed high constraints) whereas the continuum theory imposes no such predetermined constraints.
Figs. 7-10 shows the crack opening displacements for some fixed values of p4 and //a normalized with
respect to the corresponding values of v,(0,+0) — v;(0, —0) = Sv(0, 0). From the figures it may be seen that
the shear components of the relative crack openings du(x, 0) are considerably smaller and more sensitive to

7 As h/a goes to zero (€0),, given by the continuum theory, too, becomes an even function of y4 in the sense that for #/a — 0 the

continuum results converge to plate results.
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Fig. 12. The influence of coating nonhomogeneity yi on the phase angle y(a) for the interface crack at buckling instability, 2/a = 0.3.

Table 2

Critical strain and phase angle for a homogeneous half-space containing a crack parallel to the surface subjected to fixed-grip com-
pression as described in Fig. 2 with y2 = 0 and yh = 0.0001

h/a Critical strain (e),, Phase angle y (degree)
7h = 0.0001 yh=0 7h = 0.0001 yh=0

0.05 0.001921 0.001921 -39.1 -39.1
0.1 0.007103 0.007103 -39.8 -39.8
0.15 0.01467 0.01467 —40.3 —40.3
0.2 0.02381 0.02381 —40.6 -40.6
0.25 0.03388 0.03388 —40.7 —40.7
0.3 0.04439 0.04439 —40.8 -40.8
0.35 0.05498 0.05498 —40.7 —40.7
0.4 0.06540 0.06540 —40.6 -40.6
0.45 0.07551 0.07551 —40.5 —40.5
0.5 0.08520 0.08520 —40.3 -40.3

h/a and yh than the corresponding normal crack openings Sv(x,0). Fig. 7 also shows the normal crack
opening obtained from the plate model. Again, as 4/a decreases the continuum results are seen to approach
the plate results. Figs. 9 and 10 show the crack openings for a constant %/a and for various coating
stiffnesses. The trends are qualitatively similar to that shown in Figs. 7 and 8 in that as the coating stiffness
(h/a or yh) decreases the crack openings also tend to decrease. Some examples showing the dependence of
the phase angle on //a and yh are given in Figs. 11 and 12.

Some sample results for the weakened interface model are shown in Figs. 13 and 14. Fig. 13 describes the
dependence of (&), on yph for various values of geometric stiffness h/a and (dimensionless) bridging
constant as/u, where it is assumed that s; = s, = s (see Section 3.2). Also given in the figure are the results
for fully developed cracks, i.e., for s = 0. It may be observed that as s decreases, the results approach that
given by the crack problem (s = 0), the stiffer coating (or greater //a) requires higher instability load ().,
and generally the critical strain (e),, is much more sensitive to the coating nonhomogeneity for negative
values of yh. Fig. 14 shows the dependence of (¢),, on the bridging constant as/y, for two practical ma-
terial pairs, namely a metal substrate (Ti-6A1-4V, E = 116.7 GPa, v = 0.3) and a metal/zirconia (E = 151
GPa, v = 0.3) graded coating (yh = 0.2577) and a metal substrate (Rene-41 alloy, E = 219.7 GPa, v = 0.3)
and a metal/zirconia graded coating (yh = —0.3750). From the figure it may be seen that (), remains
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Fig. 13. Instability strain ()., as a function of coating nonhomogeneity y4 for the graded coating/homogeneous substrate containing
a weakened interface under fixed-grip compression.
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Fig. 14. The influence of the normalized bridging constant as/u, on the instability strain (¢,),, for the weakened interface, i/a = 0.3.

nearly constant for as/p, < 107 and increases quite rapidly with increasing bridging coefficient for
as/p > 1072

It should be observed that the results obtained in this study for the weak interface model and shown in
Figs. 13 and 14 are found by solving the corresponding continuum eigenvalue problem. For a fixed value of
the bridging coefficient as/y,, as expected, the “effective length” a is influenced by the spring constant s in
such a way that increasing s corresponds to decreasing effective length.

5.2. Postbuckling analysis

The nonlinear numerical procedure used in the postbuckling analysis of graded coatings was described in
Section 4. The benchmark results for (¢), were obtained analytically and were discussed in the previous
section (Section 5.1). In this section the critical strain (e),, is also obtained as the bifurcation point in the
postbuckling analysis. The results obtained from the constant strain loading described in Fig. 1 are shown
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in Figs. 15-18. In the numerical analysis, of necessity, the length / and the thickness %, of the substrate had
to be finite. Thus, the relative dimensions used in the calculations were assumed to be

E:30, Z—a:40, g:200,

he he he
where k. is the coating thickness. The test results obtained by varying As/h. and 2//h. showed that the
dimensions used were sufficiently large to simulate the semi-infinite medium accurately. Note that similar to
elastica problems in this problem, too, the load-displacement path cannot be determined in a straight-
forward manner by using the incremental-iterative procedure starting from zero external load (see Chiu,
2000 for the numerical solution of the elastica problem and its comparison with the exact solution). To start
the procedure first a small transverse load is applied to the coating at the point x = 0, y = +0 to induce an
initial crack opening. The load is then removed at a later stage of the incremental loading history to obtain
an equilibrium point in the postbuckling regime for the original problem. Starting from this equilibrium
point the load path is then constructed by using the incremental-iterative technique. For various values of

1.5 T — 1
—yh, 0 /1
ro vh, =0, Plate Model ]
—--— Yh, = 2.3026
10r _yn =45

S/h

osl /i

| 1

0.0 - - . .
0.000 0.001 0.002 0.003 0.004
€

Fig. 15. Crack opening displacement 8/, at the center of crack as a function of compressive strain ¢, the circles on the ¢, axis are the
instability strains ()., calculated from the analytical stability solution.
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Fig. 16. Strain energy release rate G/G, as a function of compressive strain €y, Gy = (1 — v?)K3/E;, Ky = Ese1y/Th, € = 0.002.
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Fig. 17. Modes I and 1I stress intensity factors K; and Kj; as functions of compressive strain ¢, Ky = Ese1v/Th., €, = 0.002.
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Fig. 18. Phase angle as a function of compressive strain ¢.

the coating nonhomogeneity parameter A4, the crack opening displacement at x = 0 (defined by 0) is shown
in Fig. 15. Note that as ¢ is increased ¢ remains zero until a critical loading (¢)),, is reached, then the load
path bifurcates. For each value of 4, (&), obtained from the analytical solution is also shown in the figure
(the small circle). The agreement between the two sets of calculated results appears to be very good. For
vhe = 0 the figure also shows the crack opening ¢ obtained from the plate model. The difference between the
plate and the continuum results seems to be rather insignificant. This is due to the relatively small geometric
stiffness parameter (4./a = 0.05) used in the example. Again, it may be observed that in the postbuckling
regime, too, for a given crack opening the plate model requires a greater compressive strain ¢, than the
continuum theory. This is also partly due to the greater end constraints assumed in the plate theory and is
consistent with the results given in Fig. 5.

For the example considered, the dependence of the strain energy release rate G and the stress intensity
factors K; and Kj; on the external load ¢, is shown in Figs. 16 and 17. It may be seen that for ¢ < (&), G,
K, and Ky are zero and for € > (€), material nonhomogeneity constant y4. and € have a significant
influence on the fracture mechanics parameters G, K; and Kj;. By and large the relative trends seem to
conform to intuitively expected results, namely G corresponding to s, = 0 is bracketed by the strain energy
release rates obtained from ph. < 0 and A, > 0 and G increases with decreasing coating stiffness yh..
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By examining the results for y4. = 0 given in Figs. 15 and 16, it may be seen that 6 and G predicted by the
plate model for a given ¢, are consistently smaller than that obtained from the continuum theory. This,
again, is due to the artificially imposed end constraints in the plate model. From a design viewpoint the
plate model seems to be nonconservative and requires caution in applications. Fig. 17 shows that Kj; is the
dominant stress intensity component. This may also be seen from Fig. 18 which shows the phase angle (a)
in the postbuckling regime. Relatively high and negative Kj; implies a strong possibility of crack kinking
towards the free surface. Perhaps a more practical approach to nonplanar crack growth would be either
comparing the calculated G with the mode-mixity-dependent fracture toughness G, or by using a maximum
stress-based rupture theory at the crack tip region.

6. Concluding remarks

The problems of instability and postbuckling behavior of a graded coating bonded to a homogeneous
substrate with an interface crack or a highly damaged interfacial zone and subjected to uniform in-plane
compressive strain ¢, are studied by using a kinematically nonlinear continuum theory and the von Karman
plate model. The shear modulus of the coating is assumed to be y, = u exp(yy), where g is the modulus of
the substrate and yh4. is the material nonhomogeneity constant which may be positive or negative. Fol-
lowing are some conclusions:

1. Regardless of the sign and magnitude of yh. the critical compressive strain at bifurcation ()., is
(approximately) highest for yi. = 0.

2. Because of the artificially imposed end constraints, the plate model requires (¢),, that is consistently
greater than that required by the continuum theory for all values of yi. and the difference in (e),, given
by the two theories increases with increasing 4./a.

3. For buckling the interface defect need not be a fully developed crack. Sufficiently small values of the
bridging constant as/u, and the geometric stiffness parameter 4./a (2a being the size of the flawed zone)
could also lead to buckling.

4. Good agreement is found between the bifurcation points or ()., obtained from the analytical solution
of the related eigenvalue problem and from the numerical solution of the postbuckling problem.

5. In the postbuckling regime for a given crack opening the plate model requires greater compressive strain
(€0),, than the continuum theory.

6. For a given value of loading in the postbuckling regime (e, > (¢),,) the strain energy release rate and the
crack opening predicted by the plate model are consistently smaller than that obtained from the conti-
nuum theory, implying that generally the results given by the plate model are nonconservative.

7. In the postbuckling regime the mode II stress intensity factor is dominant and negative, implying that the
crack may tend to kink toward the free surface.

Appendix A. The plate model

The plate model described in this appendix and used to obtain the approximate results in this study are
essentially the same as that given by Hutchinson and Suo (1992).

A.1. The stability analysis
In the stability analysis the delaminated part of the graded coating (—a < x < a, 0 < y < h, Figs. 1 and

19) is approximated by a “plate’ with built-in ends and is subjected to a uniform compressive strain €. The
elastic constants of the plate are given by
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Fig. 19. Configuration of the column with transformed cross-section.

E;

v = v, = v =constant, E;(y) =Eje”, Ej= ; -,
—v

0<y<h, (A.1)
where E; = 2, (1 + v) is the Young’s modulus of the substrate (Fig. 1). The analysis is carried out by using
the standard “Euler-column” approach with transformed cross-section technique accounting for the ma-
terial nonhomogeneity. From (A.1) and Fig. 19 the position of the neutral axis and the transformed area
moment of inertia may be determined as
,_fydA_jZ'ye”’"ydy_yhe‘/h—e”"”—i—l (A2)
T4 flevay T @ -1 '

_ (@ 1)’ — (yh)’e”
0 SEREECEY

The axial-force P corresponding to ¢, and the critical buckling load (per unit width) may then be expres-

sed as

(A.3)

h
P= / E*(y)epdd = / Efe”eydy = Eleo(e” —1)/7, (A.4)
0
An’E: ],
Py =210 (A.5)
(2a)
From (A.3)—(A.5) it then follows that
| 1 1
= - - y#0. A6
(@)= (1) [ o (ethyh_z)], ) # (A6)

It is seen that for the particular nonhomogeneity considered (), is an even function of the parameter yh.
For the homogeneous plate, that is, for y = 0, it can be shown that

(e = (ﬁ) (A7)

A.2. The postbuckling analysis

By following Hutchinson and Suo (1992) the crack problem associated with the postbuckling of coating
is formulated by coupling the von Karman plate with the split-beam approach (Fig. 20). It is assumed that
the crack length 2a and the thickness of the substrate are very large in comparison with the coating
thickness /4. The membrane load N and bending moment M acting on the split-beam are obtained by using
the nonlinear von Karman plate formulation. It is assumed that the thermomechanical properties of the
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Fig. 20. Geometry of the one dimensional blister: (a) the buckled coating, (b) local loading of interface crack.

coating E, v and o are known functions of y. The location of the neutral axis and the bending stiffness are
given by

h
_ o YEG)dy E
y DO ey _EO) (A8)
Jy E*(v)dy —v0)
" 2
= [ EG)I-5 . (A9)
The buckling problem may then be formulated as
d*v d*v
dv
=0 G| =0 (A1)

From (A.10) and (A.11) the deflection and the corresponding lowest eigenvalue (the buckling load) are
found to be

D

)
612

v(x) = %éh(l —kcos%)7 AN =P, =

where £ = v(0)/h is the unknown amplitude and is determined by the condition that the membrane stress in
the buckled coating is the same as the buckling stress giving

(A.12)

a P— Pr h
/ exxdx:2a( 7 : ), /1:/ E*(y)dy. (A.13)
—a 0
The nonlinear strain ¢, is given by
1/dv\*
——(==). A.14
Exx 3 <dx> ( )

From (A.12)-(A.14) it may be shown that

S H
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The bending moment M at x = a and the resultant force N are obtained as

2
D
:th—azhf, N=P—P,. (A.16)

d*v

M=Dis

X=a

By using (A.16) from the split-beam solution the strain energy release rate is then found to be

P’ For Per

The in-plane compressive load P that appears in (A.15) and (A.17) is dependent on ¢, and may be deter-
mined as

g [TED)
P= /0 xxdy—/o =) ody. (A.18)
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