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Abstract

Graded materials are multiphase composites with continuously varying thermophysical properties. The concept

provides material scientists and engineers with an important tool to develop new materials tailored for some specific

applications. One such application of this new class of materials is as top coats or interfacial regions in thermal barrier

systems. A widely observed failure mode in these layered materials is known to be interfacial cracking that leads to

spallation. In many cases it is the buckling instability of coating under mechanically or thermally induced compressive

stresses that triggers spallation. Under in-plane loading since the linear elastic small deformation theory gives only a

trivial solution, in this study the plane strain interface crack problem for a graded coating bonded to a homogeneous

substrate is formulated by using a kinematically nonlinear continuum theory. Both the instability and the postbuckling

problems are considered. The main objective of the study is the investigation of the influence of material nonhomo-

geneity, kinematic nonlinearity and plate approximation on the critical instability load and on such fracture mechanics

parameters as strain energy release rate, stress intensity factors and crack opening displacements.
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1. Introduction

A common failure mode in thermal barrier and a variety of other coatings is known to be interface

cracking that leads to spallation. Depending on the relative values of thermal expansion coefficients of the

coating and the substrate and the nature of the mechanical loading applied to the system, the in-plane

stresses in the coating may be tensile or compressive, invariably cyclic. In the case of tensile stresses the

fracture mechanism is rather straightforward: initiation of microcracks on the coating surface, subcritical

growth of a dominant crack through the coating, and formation and growth of a T-shaped crack along the
coating-substrate interface. On the other hand, particularly in the case of ceramic coatings, the spallation

fracture appears to be due to in-plane cyclic compression (Evans and Hutchinson, 1984). The process starts

by the formation and coalescence of microcracks at or near the interface asperities under cyclic loading
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(Evans et al., 1997; Nusier and Newaz, 1998; Evans et al., 1983). Thus, as a consequence of a fully formed

interface crack or a highly weakened interface the coating buckles or blisters under a peak compressive load

(e.g., Chai et al., 1983; Bottega and Maewal, 1983; Peck and Springer, 1991; Hutchinson and Suo, 1992;

Garg, 1988). In the past the studies dealing with the postbuckling analysis of coatings and thin films as well
as with the determination of buckling instability load were carried out by using an appropriate plate theory

and certain assumptions regarding the boundary conditions. A number of studies have also been carried

out on buckling instability for embedded cracks within the context of two dimensional continuum (Keer

et al., 1982; Wang et al., 1991; Wang and Takao, 1995; Madenci and Westmann, 1991). Because of the

nonlinear nature of the problem finite element methods have also been used rather extensively in investi-

gating the general problem of buckling and delamination growth in coating/substrate systems (e.g., Nilsson

and Giannakopoulos, 1990; Nilsson et al., 1993; Whitcomb, 1989).

In the process of interface crack growth leading to spallation fracture, at first the crack is driven sub-
critically in a co-planar fashion. Then, upon reaching the critical condition at the crack tip a mixed-mode

fracture occurs, exposing the interface to an undesirable thermal or chemical environment. In most studies

on the subject the objective, therefore, has been the evaluation of the crack driving force for a given in-

terface crack and a thermomechanical loading system. For in-plane compression since the infinitesimal

theory of elasticity would give only a trivial solution (that is, no crack opening) the problem must be treated

by using a kinematically nonlinear theory (Chiu, 2000). In previous studies involving buckling instability

and postbuckling analysis the underlying mechanics problems have been solved by using the von Karman

plate theory and by assuming that the layered medium is piecewise homogeneous (e.g., Hutchinson and
Suo, 1992). This so-called buckle-driven delamination has also been considered by Bao and Cai (1997) for a

graded coating bonded to a semi-infinite homogeneous substrate and containing a crack parallel to the

interface. The related postbuckling problem for the plate with graded properties was solved by using the

technique described by Hutchinson and Suo (1992). 1 Coatings designed to protect the substrate against

severe thermal and chemical environments are invariably ceramics. In such applications ceramics, however,

seem to have certain undesirable properties, namely brittleness, poor bonding strength and high residual

and thermal stresses. They are, therefore, highly susceptible to cracking and spallation. An alternative

concept that may be used to overcome some of these shortcomings of the homogeneous ceramic coatings
appears to be the through-thickness grading of the thermophysical properties of coatings (Miyamoto et al.,

1999). Graded materials, also known as functionally graded materials (FGMs), are generally two phase

composites with continuously varying volume fractions or compositions. Used as coatings and interfacial

zones they tend to reduce stresses resulting from the material property mismatch, increase the bonding

strength, improve the surface properties and provide protection against adverse thermal and chemical

environments. Thus the concept provides the material scientists and engineers with an important tool to

design new materials for some specific applications. For a comprehensive review of the design, processing

and applications of graded materials and for extensive references (see Yamanouchi et al., 1990; Holt et al.,
1993; Ilschner and Cherradi, 1995; Shiota and Miyamoto, 1997; Kaysser, 1999; Trumble et al., 2001).

Aside from some useful physical properties mentioned above, the graded materials have also certain

analytical advantages, that is, by eliminating material property discontinuities some well known mathe-

matical anomalies associated with the bonded dissimilar materials are also eliminated. These are the

complex singularities for the interface cracks, nonsquare-root singularities for cracks terminating at the

interfaces and weak power singularities at the points of intersection of free surfaces and interfaces. Thus, in

studying the fracture mechanics of graded materials by using, for example, a standard finite element

procedure, the calculation of the strain energy release rate and the stress intensity factors becomes quite
straightforward.
1 At the request of the reviewer and for completeness the technique is also briefly outlined in an Appendix A to this article.
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Fig. 1. Graded coating bonded to a homogeneous substrate with an interface crack subjected to uniform compressive strain.
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Despite the fact that the concept of material property grading is relatively new, 2 it has a wide range of
potentially very useful and technologically very important applications. Following are some of these appli-

cations the feasibility of which has been demonstrated: high temperature resistant coatings; coatings on load

transfer components (e.g., gears, bearings and other contacting elements); impact-resistant surface layers;

interfacial zones with high bonding strength; thermoelectric cells with improved thermal efficiency; and

graded index optical glass and polymer fibers for high speed data transmission (mostly in local area networks).
2. Description of the problem

In actual applications such as gas turbines, combustion chambers and high speed civil transport, the

thermal barrier system consists of a ceramic top coat (the primary heat shield), a very thin layer of ther-

mally grown oxide which developes during operation and a bond coat deposited over the substrate to

prevent oxygen diffusion. Also the debonded region is most likely circular or elliptic. In this study we

consider a somewhat idealized version of the problem which is shown in Fig. 1. It is assumed that the
dimensions of the substrate are very large in comparison with the coating thickness h and the length 2a of

the interface crack. Thus, the plane strain problem under consideration consists of a graded coating bonded

to a homogeneous, isotropic semi-infinite substrate. The composite medium is subjected to remote in-plane

(fixed-grip) compression
2 Th

success
�1xxð�1; yÞ ¼ ��0; �1 < y < 0; �2xxð�1; yÞ ¼ ��0; 0 < y < h; ð1Þ
where the subscripts 1 and 2 refer to materials 1 (substrate) and 2 (coating), respectively. In previous studies

it was shown that the influence of the variation in Poisson�s ratio m for crack problems in graded materials is

rather insignificant (Delale and Erdogan, 1988; Chen and Erdogan, 1996) and m may be assumed to be

constant throughout the medium. It is further assumed that the material nonhomogeneity in the coating

may be expressed by
l2ðyÞ ¼ l1e
cy ; 0 < y < h; ð2Þ
where l1 is the shear modulus of the substrate which is constant and the dimensionless parameter ch is the

measure of material nonhomogeneity.
e phrase functionally graded material (FGM) and the underlying concept were first proposed by M. Niino and the first

ful manufacture of a graded material (superalloy/ceramic for high temperature resistance) was described by Niino et al. (1987).
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Again from Fig. 1 observing that the solution given by the linear continuum modeling of the medium is of

no physical consequence, in this study the problems of buckling instability and postbuckling analysis need to

be treated by using a kinematically nonlinear continuum model. The main objectives of this study are, then,

(i) to examine the limitations of the plate approximation by comparing the results obtained from the von
Karman plate theory and the nonlinear elasticity, (ii) to investigate the influence of the material property

grading in the coating on the stress intensity factors, the strain energy release rate, the crack opening dis-

placement and the buckling instability load, and (iii) to carry out the necessary postbuckling analysis.
3. The buckling instability problem for graded coatings

3.1. The formulation

In the absence of body forces the equations of finite deformation theory of elasticity may be expressed as

(e.g., Malvern, 1969)
rij;j þ ðrjkui;kÞ;j ¼ 0; ð3Þ

ðrij þ rjkui;kÞnj ¼ Ti; ð4Þ

where ui, rij, Ti, and ni, ði; jÞ ¼ ð1; 2; 3Þ, are, respectively, the components of the displacement, second

Piola–Kirchhoff stress, surface traction and unit normal vector. Note that (3) and (4) are referenced to a

fixed Cartesian coordinate system under the Lagrangian description of deformations. The Green–Lagrange

strains are then given by
�ij ¼ 1
2
ðui;j þ uj;i þ uk;iuk;jÞ: ð5Þ
For the stability analysis (3)–(5) may be reduced to a linearized set of equations by using a standard

perturbation technique (or the adjacent equilibrium concept). It is assumed that at bifurcation a critical

equilibrium configuration exists which in the sequel is denoted by the superscript (0). The displacements,

stresses, tractions and strains for an adjacent or buckled configuration may then be expressed as follows:
ui ¼ uð0Þi þ u�i ; rij ¼ rð0Þ
ij þ r�

ij; Ti ¼ T ð0Þ
i þ T �

i ; �ij ¼ �
ð0Þ
ij þ ��ij; ð6a–dÞ
where the asterisk denotes the perturbation or a small deviation from the critical equilibrium configuration.
Thus, by substituting from (6) into (3)–(5) and neglecting the higher order terms we obtain the following

system of linear equations
r�
ij;j þ ðrð0Þ

jk u
�
i;kÞ;j ¼ 0; ð7Þ

ðr�
ij þ rð0Þ

jk u
�
i;kÞnj ¼ T �

i ; ð8Þ

��ij ¼ 1
2
ðu�i;j þ u�j;iÞ: ð9Þ
For the plane strain problem described by Fig. 1, the in-plane strain �0 is the only applied load in terms of

which the initial equilibrium state at bifurcation is found to be
�
ð0Þ
ixx ¼ ��0; rð0Þ

iyy ¼ 0; rð0Þ
ixy ¼ 0; �

ð0Þ
ixy ¼ 0; �

ð0Þ
iyy ¼

3� ji

ji þ 1

� �
�0; rð0Þ

ixx ¼ � 8li�0
ji þ 1

ði ¼ 1; 2Þ;

ð10a–fÞ

where i ¼ 1; 2 refer to materials 1 (the substrate) and 2 (the coating), respectively, and j ¼ 3–4m. By using

the kinematic relations (9), the Hooke�s law
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r�
xx ¼

jþ 1

j� 1

� �
l��xx þ

3� j
j� 1

� �
l��yy ;

r�
yy ¼

3� j
j� 1

� �
l��xx þ

jþ 1

j� 1

� �
l��yy ;

r�
xy ¼ 2l��xy ;

ð11a–cÞ
and the relations expressing the material nonhomogeneity
liðyÞ ¼ li0e
ciy ; i ¼ 1; 2; ð12Þ
from (7) it may be shown that
ðjþ 1Þ o
2u�i
ox2

þ ðj� 1Þ o
2u�i
oy2

þ 2
o2v�i
oxoy

þ ciðj� 1Þ ou�i
oy

�
þ ov�i

ox

�
� 8

j� 1

jþ 1

� �
�0
o2u�i
ox2

¼ 0; i ¼ 1; 2;

ðj� 1Þ o
2v�i
ox2

þ ðjþ 1Þ o
2v�i
oy2

þ 2
o2u�i
oxoy

þ cið3� jÞ ou
�
i

ox
þ ciðjþ 1Þ ov

�
i

oy
� 8

j� 1

jþ 1

� �
�0
o2v�i
ox2

¼ 0; i ¼ 1; 2;

ð13a;bÞ
where l10 ¼ l20 ¼ l1, c1 ¼ 0, c2 ¼ c, and ui and vi are the x and y components of the displacement, the

subscript i ¼ 1; 2 representing the materials 1 and 2. The equilibrium equations (13) must be solved under
the following boundary and continuity conditions:
r�
2yyðx; hÞ ¼ 0; r�

2xyðx; hÞ ¼ 0; �1 < x < 1; ð14a;bÞ
r�
2yyðx;þ0Þ ¼ r�

1yyðx;�0Þ; r�
2xyðx;þ0Þ ¼ r�

1xyðx;�0Þ; �1 < x < 1; ð15a;bÞ
r�
1yyðx;�0Þ ¼ 0; r�

1xyðx;�0Þ ¼ 0; �a < x < a; ð16a;bÞ
u�1ðx;�0Þ ¼ u�2ðx;þ0Þ; v�1ðx;�0Þ ¼ v�2ðx;þ0Þ; jxj > a: ð17a;bÞ
From (13) it may be seen that for c ¼ 0 the problem reduces to a stability problem for a homogeneous half

plane with a crack parallel to its boundary. Similarly, for �0 ¼ 0 we obtain the standard equations elas-

tostatics for a nonhomogeneous medium. It should be emphasized that in the problem under consideration

both the differential equation (13) and the boundary conditions (14)–(17) are homogeneous. Thus, the

system constitutes a typical eigenvalue problem of the form
Lðu
�
Þ ¼ kNðu

�
Þ ð18Þ
subject to appropriate homogeneous boundary conditions where u
�
and k represent the displacements and

the applied load �0, respectively. Thus, aside from a null solution Eqs. (13)–(17) would admit a nonzero

solution only for a discrete set of eigenvalues �0i, i ¼ 1; 2; . . . ; the lowest nonzero eigenvalue being the

critical load ð�0Þcr.
To determine ð�0Þcr and the fracture mechanics parameters we simply proceed with the solution of the

mixed boundary value problem formulated by (13)–(17). By using the standard Fourier transforms, for the

substrate ði ¼ 1Þ from (13) we obtain
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u�1ðx; yÞ ¼
1

2p

Z 1

�1
ðA1e

k1y þ A2e
k2yÞeiax da;

v�1ðx; yÞ ¼
1

2p

Z 1

�1

a
ik1

A1e
k1y

�
þ k2

ia
A2e

k2y

�
eiax da;

ð19a;bÞ

k1 ¼ 1

�
� 8�0
jþ 1

�1=2

jaj; k2 ¼ 1

"
� 8ðj� 1Þ�0

ðjþ 1Þ2

#1=2
jaj; ð20a;bÞ
where A1 and A2 are unknown functions of a. Similarly, for the graded coating (Eq. (13), i ¼ 2) we find
u�2ðx; yÞ ¼
1

2p

Z 1

�1

X4
k¼1

CkðaÞenkyeiax da;

v�2ðx; yÞ ¼
1

2p

Z 1

�1

X4
k¼1

mkðaÞCkðaÞenkyeiax da;
ð21a;bÞ
where C1; . . . ;C4 are unknown, n1; . . . ; n4 are the roots of the characteristic equation resulting from (13) and

are found to be
n1 ¼ � c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a2 1� 8j�0

ðjþ 1Þ2

" #
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

ð8�0Þ2

ðjþ 1Þ4
� c2

3� j
jþ 1

� �svuut ;

n2 ¼ � c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a2 1� 8j�0

ðjþ 1Þ2

" #
� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

ð8�0Þ2

ðjþ 1Þ4
� c2

3� j
jþ 1

� �svuut ;

n3 ¼ � c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a2 1� 8j�0

ðjþ 1Þ2

" #
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

ð8�0Þ2

ðjþ 1Þ4
� c2

3� j
jþ 1

� �svuut ;

n4 ¼ � c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a2 1� 8j�0

ðjþ 1Þ2

" #
� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

ð8�0Þ2

ðjþ 1Þ4
� c2

3� j
jþ 1

� �svuut

ð22a–dÞ
and the coefficients m1; . . . ;m4 are given by
mkðaÞ ¼
�ia½2nk þ cð3� jÞ�

ðjþ 1Þn2k þ cðjþ 1Þnk � ðj� 1Þ � 8 j�1
jþ1

� �
�0

h i
a2

; k ¼ 1; . . . ; 4: ð23Þ
Four of the six unknowns Aj, ðj ¼ 1; 2Þ and Ck, ðk ¼ 1; . . . ; 4Þ may be eliminated by substituting from (9),
(11), (19) and (21) into the homogeneous conditions (14) and (15). The remaining two unknowns may then

be determined from the mixed boundary conditions (16) and (17).

3.2. The integral equations

By defining the following unknown functions
f1ðxÞ ¼
o

ox
½v�2ðx;þ0Þ � v�1ðx;�0Þ�;

f2ðxÞ ¼
o

ox
½u�2ðx;þ0Þ � u�1ðx;�0Þ�;

�1 < x < 1 ð24a;bÞ
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and from (17) observing that
f1ðxÞ ¼ 0; f2ðxÞ ¼ 0; jxj > a; ð25a;bÞ
after somewhat lengthy but straightforward manipulations and after performing the necessary asymptotic

analysis, the mixed boundary conditions (16) and (17) may be reduced to
l1

p

Z a

�a

X2
j¼1

Didij
t � x

�
þ kijðx; tÞ

�
fjðtÞdt ¼ 0; i ¼ 1; 2; jxj < a; ð26Þ
where kijðx; tÞ, ði; j ¼ 1; 2Þ are known functions (see Chiu (2000) for complete details and extensive results)

and the constants D1 and D2 are given by
D1 ¼
1� 8�0

jþ 1

� �1=2

1� 8ðj� 1Þ�0
ðjþ 1Þ2

" #1=2
� 1� 4�0

jþ 1

� �2

4�0
jþ 1

1� 8ðj� 1Þ�0
ðjþ 1Þ2

" #1=2 ;

D2 ¼
1� 8�0

jþ 1

� �1=2

1� 8ðj� 1Þ�0
ðjþ 1Þ2

" #1=2
� 1� 4�0

jþ 1

� �2

4�0
jþ 1

1� 8�0
jþ 1

� �1=2
:

ð27a;bÞ
From the definition (24) and conditions (17) it follows that the integral equations (26) must be solved under

the following single-valuedness conditions
Z a

�a
fiðtÞdt ¼ 0; i ¼ 1; 2: ð28Þ
It should again be observed that in the instability problem under consideration the integral equations (26)

as well as the auxiliary conditions (28) are homogeneous and normally f1 ¼ 0 and f2 ¼ 0 would be the only
solution. However, the kernels in (26) are very complicated functions of the variable loading parameter �0.
The problem is, therefore, an eigenvalue problem and for certain discrete set of positive values of �0 it may

admit nonzero solutions.

3.3. The problem of highly damaged interface

The forgoing analysis is based on the assumption that a through crack exists along the x axis

(�a < x < a, y ¼ 0, Fig. 1). In some cases, however, one may have only a highly weakened interfacial

region rather than complete rupture. The damaged region may be modeled as a series of small interface
cracks separated by weak unbroken ligaments shown in Fig. 2. In the model adopted in this study it is

assumed that the ligaments may be represented by a pair of tension and shear springs. Thus, the problem of

a series of small collinear cracks may be replaced by that of a macroscopic crack (�a < x < a, y ¼ 0) the

surfaces of which are connected by springs with continuously distributed coefficients s1 and s2 (Fig. 2).

From Figs. 1 and 2 it may be seen that in the highly damaged interface problem the Eqs. (13), (14), (15) and

(17) are still valid, but (16) must be replaced by a pair of conditions that account for the crack surface

bridging effect. For simplicity here it will be assumed that the bridging stresses are proportional to the

relative crack openings, that is the springs are assumed to be linear. Thus, the conditions that replace (16)
become
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Fig. 2. (a) Graded coating bonded to a homogeneous substrate with a weakened interfacial region subjected to uniform compressive

strain. (b) Tension and shear springs modeling crack surface ligaments.
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r�
1yyðx;�0Þ ¼ s1½v2ðx;þ0Þ � v1ðx;�0Þ�;

r�
1xyðx;�0Þ ¼ s2½u2ðx;þ0Þ � u1ðx;�0Þ�; jxj < a; ð29a;bÞ
where s1 and s2 are known constants. From (17) and (24) the crack opening displacements may be expressed

as
v2ðx;þ0Þ � v1ðx;�0Þ ¼
Z x

�a
f1ðtÞdt; jxj < a;

u2ðx;þ0Þ � u1ðx;�0Þ ¼
Z x

�a
f2ðtÞdt; jxj < a:

ð30a;bÞ
Noting that in the problem (29a) and (29b) are the crack surface tractions, taking into account (29) and

(30), the integral equations (26) will have to be modified as
l1

p

Z a

�a

X2
j¼1

Didij
t � x

�
þ kijðx; tÞ

�
fjðtÞdt � si

Z x

�a
fiðtÞdt ¼ 0; i ¼ 1; 2; jxj < a: ð31Þ
Eqs. (31), too, must be solved under the single-valuedness conditions (28). We again observe that both (31)

and (28) are homogeneous and consequently the system constitutes an eigenvalue problem.

It should be noted that as long as the ‘‘applied load’’ �0 is less than a critical value ð�0Þcr the crack

surfaces remain closed. The springs s1 and s2 that provide the crack surface bridging are assumed to be
linear. Consequently the eigenvalue problem formulated by (31) and (28) remains to be also linear. The

problem becomes nonlinear during the postbuckling phase of the loading �0 > ð�0Þcr. The eigenvalue



T.-C. Chiu, F. Erdogan / International Journal of Solids and Structures 40 (2003) 7155–7179 7163
problem becomes also nonlinear if the bridging forces applied by the ligaments are modeled in a physically

more realistic manner (see, for example, Erdogan and Joseph (1989)).
3.4. On the solution of integral equations

To solve the integral equations (26) and (31), first the following normalized quantities are defined
s ¼ t=a; r ¼ x=a; �1 < ðs; rÞ < 1; ð32Þ
FiðsÞ ¼ fiðtÞ; Kijðr; sÞ ¼ akijðx; tÞ; i; j ¼ 1; 2: ð33Þ
Eqs. (26), (31) and (28) then become
l1

p

Z 1

�1

X2
j¼1

Didij
s� r

�
þ Kijðr; sÞ

�
FjðsÞds ¼ 0; i ¼ 1; 2; �1 < r < 1; ð34Þ
l1

p

Z 1

�1

X2
j¼1

Didij
s� r

�
þ Kijðr; sÞ

�
FjðsÞds� asi

Z r

�1

FiðsÞds ¼ 0; i ¼ 1; 2; �1 < r < 1; ð35Þ
Z 1

�1

FiðsÞds ¼ 0; i ¼ 1; 2: ð36Þ
It may easily be shown that the index of (34) and (35) is +1 and their solutions are of the form
FiðsÞ ¼
giðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ; �1 < s < 1; i ¼ 1; 2: ð37Þ
The bounded unknown functions g1ðsÞ and g2ðsÞ are H€oolder-continuous and gið�1Þ 6¼ 0, giðþ1Þ 6¼ 0, i ¼ 1,

2. These functions can be expressed in terms of infinite series of orthogonal polynomials associated with the

weight function ð1� s2Þ�1=2
(in this case the Chebyshev polynomials of the first kind TnðsÞ, n ¼ 0; 1; . . .).

Truncating the series and considering the following symmetry properties of Tn, vi and ui
F1ðsÞ ¼ �F1ð�sÞ; F2ðsÞ ¼ F2ð�sÞ; ð38Þ
T2n�1ðsÞ ¼ �T2n�1ð�sÞ; T2nðsÞ ¼ T2nð�sÞ; n ¼ 0; 1; . . . ð39Þ
the unknown functions F1 and F2 may be approximated as follows:
F1ðsÞ ffi
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

XN
n¼1

BnT2n�1ðsÞ; ð40Þ
F2ðsÞ ffi
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

XN
n¼1

BNþnT2nðsÞ: ð41Þ
From the orthogonality conditions of TnðsÞ it follows that (40) and (41) satisfy the single-valuedness
conditions (36) identically. The unknown coefficients Bn, n ¼ 1; . . . ; 2N , may then be determined by sub-

stituting from (40) and (41) into the integral equations (34) or (35). Thus, by using the relations
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1

p

Z 1

�1

TkðsÞds
ðs� rÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ¼

0; k ¼ 0; jrj < 1;
Uk�1ðrÞ; k > 0; jrj < 1;

�
r � jrj

r

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p� �k
jrj
r

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p� � ; kP 0; jrj > 1;

8>>>>><
>>>>>:

ð42Þ

Z 1

�1

TkðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p log js� rjds ¼ � p
k
TkðrÞ; kP 1; ð43Þ

Z 1

�1

TkðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p js� rj
s� r

ds ¼ 2

k
Uk�1ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
; kP 1 ð44Þ
to regularize the integrals involving Cauchy and logarithmic singularities and the discontinuous behavior in

the kernels and by performing the remaining integrals, the singular integral equations (34) and (35) may be

reduced to a functional equation of the form
X2N
j¼1

Gjðr; �0ÞBj ¼ 0: ð45Þ
In (42) and (44) UkðrÞ is the Chebyshev polynomial of the second kind. We again note that in (34) and (35)

Di and Kij are functions of the variable load parameter �0. Consequently the coefficients Gj and through

which Bj and the original unknown functions f1 and f2 are also functions of �0. Eq. (45) may be solved for

Bj by using a standard weighted residual technique. For example, using a collocation technique, (45) may

be reduced to
X2N
j¼1

cijð�0ÞBj ¼ 0; cijð�0Þ ¼ Gjðri; �0Þ; i ¼ 1; . . . ; 2N : ð46Þ
Aside from the trivial solution Bj ¼ 0, j ¼ 1; . . . ; 2N ; a nonzero solution of (46) exists for values of �0
satisfying
jcijð�0Þj ¼ 0 ði; j ¼ 1; . . . ; 2NÞ: ð47Þ
The smallest positive root of (47) �01 is the critical instability load ð�0Þcr and the corresponding eigenvector
B1j would give the fundamental buckling mode.

3.5. Crack opening displacements and stress intensity factors

After determining Bj from (30a), (30b), (40) and (41) the crack opening displacements may be evaluated
as follows:
v2ðx;þ0Þ � v1ðx;�0Þ ¼ �
XN
k¼1

B1k
U2k�2ðx=aÞ
2k � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; jxj < a;

u2ðx;þ0Þ � u1ðx;�0Þ ¼ �
XN
k¼1

BNþk
U2k�1ðx=aÞ

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; jxj < a:

ð48a;bÞ
It should be noted that the eigenvectors Bj obtained from the homogeneous system (47) are determinate

within an arbitrary multiplicative constant. Consequently (48) gives only the relative shape rather than the
actual value of the crack opening.



Table 1

On the convergence of the calculated instability load ð�0Þcr and phase angle wðaÞ, m ¼ 0:3 (Fig. 1)

N h=a ¼ 0:05, ch ¼ 0 h=a ¼ 0:3, ch ¼ �2:3026

ð�0Þcr wðaÞ (degree) ð�0Þcr wðaÞ (degree)
2 0.001916 )25.52 0.04027 )37.82
4 0.001906 )37.30 0.03672 )42.15
8 0.001921 )39.12 0.03671 )42.36
16 0.001921 )39.07 0.03671 )42.37
32 0.001921 )39.07 0.03671 )42.39
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Similarly by using (42) and by observing that (26a) and (26b) represent r�
yyðx; 0Þ and r�

xyðx; 0Þ outside
ðjxj > aÞ as well as within ðjxj < aÞ the crack, the stress intensity factors may be evaluated as
3 Se

obtain
KIðaÞ ¼ lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
r�
yyðx; 0Þ ¼ �l1D1

ffiffiffiffiffiffi
pa

p XN
j¼1

Bj ¼ KIð�aÞ;

KIIðaÞ ¼ lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
r�
xyðx; 0Þ ¼ �l1D2

ffiffiffiffiffiffi
pa

p XN
j¼1

BNþj ¼ �KIIð�aÞ:
ð49a; bÞ
Again, because of the arbitrariness in the magnitude of the eigenvector Bk at �0 ¼ ð�0Þcr only the relative

values of the stress intensity factors can be evaluated. This means that the phase angle wðaÞ which defines

the mode mixity may be evaluated exactly:
wðaÞ ¼ tan�1 KIIðaÞ
KIðaÞ

¼ tan�1 D2

XN
j¼1

BNþj=D1

XN
j¼1

Bj

 !
: ð50Þ
Once N is prescribed, using iteration (47) can be solved for �0 within any desired degree of accuracy.

Table 1 shows some results that give an idea about the convergence of the calculated quantities, in this case

the instability load ð�0Þcr and the phase angle wðaÞ. The results are obtained for a homogeneous half plane

ðch ¼ 0Þ 3 with a crack parallel to the boundary and for a graded coating (ch ¼ �2:3026 or l2ðhÞ=l1 ¼ 0:1)
with an interface crack. The convergence seems to be very good. For as small as N ¼ 8 (a total of 16

unknown coefficients), the results appear to be quite accurate.
4. The postbuckling analysis

From the physics of the problem it is clear that as long as the applied load �0 is below the critical value

ð�0Þcr, the crack will remain closed and the stress intensity factors and the strain energy release rate will be

zero. The problems of interest in this study are, then, the determination of ð�0Þcr and the postbuckling

analysis. The instability problem for a graded coating was considered in the previous section. To complete

the fracture mechanics problem and to model such phenomena as subcritical crack growth and crack

branching, the nonlinear postbuckling analysis also needs to be carried out. In this study this is done by
using a finite element method based on the code FRAC2D (Kaya and Nied, 1993). The modified code uses

special nonhomogeneous enriched 12-noded quadrilateral and 10-noded triangular cubic elements for the

crack tip region which makes it possible to calculate the stress intensity factors directly. The ‘‘enriched’’
e (Chiu, 2000), Appendix H for the solution of the half plane problem where the kernels kij of the integral equations (26) are

ed in closed form, simplifying the problem quite considerably.
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finite element method includes the effect of crack tip singularity in the conventional finite element dis-

placement formulation. For the rest of the composite medium geometrically nonlinear nonhomogeneous

12-noded quadrilateral and 10-noded triangular cubic isoparametric elements are used. The nonhomo-

geneity is accounted for by prescribing the thermomechanical material constants at the Gaussian

integration points. One important issue in integrating enriched and nonlinear finite elements is the inter-

element compatibility between these two types of elements which can be handled by introducing a layer of

transition elements and a zeroing function (Fig. 3). Thus, the general form of the components of the

displacement vector within the jth element may be expressed as
4 In
u1j ¼
XM
k¼1

Nkuk1j þ Z KI f1j

 "
�
XM
k¼1

Nkf k
1j

!
þ KII g1j

 
�
XM
k¼1

Nkgk1j

!#
; ð51aÞ
u2j ¼
XM
k¼1

Nkuk2j þ Z KI f2j

 "
�
XM
k¼1

Nkf k
2j

!
þ KII g2j

 
�
XM
k¼1

Nkgk2j

!#
; ð51bÞ
where uk1j and uk2j are the nodal point displacements, Nk is the appropriate interpolation function, M is
the number of nodes, KI and KII are the modes I and II stress intensity factors, fij and gij correspond to the

asymptotic expressions for the displacements near the crack tip and Z is the zeroing function. 4 The

function Z is defined in such a way that Z ¼ 1 in the enriched elements, is a linear function in the transition

elements and Z ¼ 0 for the remaining nonlinear elements (Fig. 3). Similarly, to overcome the incompati-

bility in the strain-displacement relations and to attain better computational convergence it is also assumed

that
�rs ¼ 1
2
½ur;s þ us;r þ ð1� ZÞuk;ruk;s�; ðk; r; sÞ ¼ ð1; 2Þ: ð52Þ
In (51) the unknowns are 2M nodal point displacements and two stress intensity factors KI and KII. For

example, for a 12-noded quadrilateral element there are 26 unknowns.
The postbuckling problem under consideration is nonlinear and is solved by using an incremental-

iterative procedure. That is, instead of applying the full amount of the external load in one step, a series of

smaller load increments are applied. For each load increment an approximate solution is obtained by re-

ferring all variables to a previously known equilibrium configuration and by linearizing the resulting

equations. The solution is then improved by iteration (see Chiu, 2000 for details).
(51) the subscripts 1 and 2 refer to the x and y components of the corresponding quantities.
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5. Results and discussion

5.1. The instability problem

Some sample results for the instability problem described in Fig. 1 and obtained by following the

procedure outlined in Section 3 are given in Figs. 4–12. In all the examples discussed in this section the

Poisson�s ratio is assumed to be 0.3. The hypothetical nonhomogeneity parameters ch used in the examples

correspond to the material stiffness parameter as follows (Fig. 1):
ch ¼ 3:0 ! l2ðhÞ=l1 ¼ 20:09;

ch ¼ 2:3026 ! l2ðhÞ=l1 ¼ 10;

ch ¼ �2:3026 ! l2ðhÞ=l1 ¼ 0:1;

ch ¼ �3:0 ! l2ðhÞ=l1 ¼ 0:04979;
Fig. 4. Instability strain ð�0Þcr as a function of h=a.

Fig. 5. Instability strain ð�0Þcr as a function of coating nonhomogeneity ch.



Fig. 6. The difference between the instability strain predicted by plate approximation ð�0Þcr-pl: and that by continuum model ð�0Þcr-cont: as
a function of h=a.

Fig. 7. Normalized crack opening displacements for ch ¼ �2:3026, dvðx; 0Þ ¼ v2ðx;þ0Þ � v1ðx;�0Þ.
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where l2ðyÞ ¼ l1 expðcyÞ (Fig. 1). Since ch ¼ 0 could not be substituted in the nonhomogeneous analysis

due to numerical difficulties, also considered in calculations were the case of ch ¼ 0:0001 in the nonhomo-

geneous program and ch ¼ 0, the homogeneous half plane which was obtained independently (Chiu,

2000). This was done partly to verify the accuracy of the nonhomogeneous analysis and the related nu-

merical procedure. The calculated values of the critical strain ð�0Þcr and the phase angle wðaÞ (at the crack
tip x ¼ þa) for ch ¼ 0:0001 and ch ¼ 0 are shown in Table 2. For a very wide range of the geometric
stiffness constant h=a, the two sets of results are seen to be identical. 5
5 Table 2 indicates that the mode II stress intensity factor is negative. Since the material is homogeneous, KII < 0 implies that the

crack will grow toward the less stiff medium or the free surface.



Fig. 8. Normalized crack opening displacements for ch ¼ �2:3026, duðx; 0Þ ¼ u2ðx;þ0Þ � u1ðx;�0Þ.

Fig. 9. Normalized crack opening displacements for h=a ¼ 0:3, dvðx; 0Þ ¼ v2ðx;þ0Þ � v1ðx;�0Þ.
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The calculated critical strain ð�0Þcr is shown in Fig. 4 as a function of geometric stiffness parameter h=a. It
is seen that ð�0Þcr is a monotonically increasing function of h=a and properly approaches zero as h=a goes to

zero. 6 The figure also shows that regardless of the nature of coating nonhomogeneity, for all values of h=a
the homogeneous medium requires a greater instability load to initiate buckling. Intuitively one would

expect that the critical loads for ch > 0 and ch < 0 would bracket ð�0Þcr for ch ¼ 0. The fact that this

argument would be very misleading may be seen from Fig. 5 which shows the influence of material non-

homogeneity on the buckling strain ð�0Þcr for h=a ¼ 0:05, 0.1 and 0.15. Also shown in Fig. 5 is the critical

strain obtained from the plate theory (see the Appendix A for closed form solution). The plate theory shows
that ð�0Þcr for the plate is an even function of ch and becomes maximum at ch ¼ 0. The critical strain given

by the continuum theory shows the same trend as that given by the plate theory except that the maximum is
6 In the case of plate approximation, near h=a ¼ 0, ð�0Þcr � ðh=aÞ2 (see Hutchinson and Suo, 1992 and the Appendix A).



Fig. 10. Normalized crack opening displacements for h=a ¼ 0:3, duðx; 0Þ ¼ u2ðx;þ0Þ � u1ðx;�0Þ.

Fig. 11. Phase angle wðaÞ for the interface crack at buckling instability as a function of h=a.
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slightly shifted toward negative ch. 7 Note that for very small values of h=a, as expected, the results ob-
tained from plate and continuum theories are indistinguishable, whereas for greater values of h=a the

difference could be very significant. Also, for all values of h=a and ch the plate theory predicts consistently

higher values for critical strain. For ch ¼ 0 this may also be seen from Fig. 6 which shows the difference

between the critical strains calculated from the continuum and the plate models. The difference may be

attributed to the fact that at x ¼ �a the plate is assumed to have built-in ends (that is, ends with artificially

imposed high constraints) whereas the continuum theory imposes no such predetermined constraints.

Figs. 7–10 shows the crack opening displacements for some fixed values of ch and h=a normalized with

respect to the corresponding values of v2ð0;þ0Þ � v1ð0;�0Þ ¼ dvð0; 0Þ. From the figures it may be seen that
the shear components of the relative crack openings duðx; 0Þ are considerably smaller and more sensitive to
7 As h=a goes to zero ð�0Þcr given by the continuum theory, too, becomes an even function of ch in the sense that for h=a ! 0 the

continuum results converge to plate results.



Fig. 12. The influence of coating nonhomogeneity ch on the phase angle wðaÞ for the interface crack at buckling instability, h=a ¼ 0:3.

Table 2

Critical strain and phase angle for a homogeneous half-space containing a crack parallel to the surface subjected to fixed-grip com-

pression as described in Fig. 2 with ch ¼ 0 and ch ¼ 0:0001

h=a Critical strain ð�0Þcr Phase angle w (degree)

ch ¼ 0:0001 ch ¼ 0 ch ¼ 0:0001 ch ¼ 0

0.05 0.001921 0.001921 )39.1 )39.1
0.1 0.007103 0.007103 )39.8 )39.8
0.15 0.01467 0.01467 )40.3 )40.3
0.2 0.02381 0.02381 )40.6 )40.6
0.25 0.03388 0.03388 )40.7 )40.7
0.3 0.04439 0.04439 )40.8 )40.8
0.35 0.05498 0.05498 )40.7 )40.7
0.4 0.06540 0.06540 )40.6 )40.6
0.45 0.07551 0.07551 )40.5 )40.5
0.5 0.08520 0.08520 )40.3 )40.3
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h=a and ch than the corresponding normal crack openings dvðx; 0Þ. Fig. 7 also shows the normal crack
opening obtained from the plate model. Again, as h=a decreases the continuum results are seen to approach

the plate results. Figs. 9 and 10 show the crack openings for a constant h=a and for various coating

stiffnesses. The trends are qualitatively similar to that shown in Figs. 7 and 8 in that as the coating stiffness

(h=a or ch) decreases the crack openings also tend to decrease. Some examples showing the dependence of

the phase angle on h=a and ch are given in Figs. 11 and 12.

Some sample results for the weakened interface model are shown in Figs. 13 and 14. Fig. 13 describes the

dependence of ð�0Þcr on ch for various values of geometric stiffness h=a and (dimensionless) bridging

constant as=l1 where it is assumed that s1 ¼ s2 ¼ s (see Section 3.2). Also given in the figure are the results
for fully developed cracks, i.e., for s ¼ 0. It may be observed that as s decreases, the results approach that

given by the crack problem ðs ¼ 0Þ, the stiffer coating (or greater h=a) requires higher instability load ð�0Þcr
and generally the critical strain ð�0Þcr is much more sensitive to the coating nonhomogeneity for negative

values of ch. Fig. 14 shows the dependence of ð�0Þcr on the bridging constant as=l1 for two practical ma-

terial pairs, namely a metal substrate (Ti–6Al–4V, E ¼ 116:7 GPa, m ¼ 0:3) and a metal/zirconia (E ¼ 151

GPa, m ¼ 0:3) graded coating ðch ¼ 0:2577Þ and a metal substrate (Rene-41 alloy, E ¼ 219:7 GPa, m ¼ 0:3)
and a metal/zirconia graded coating ðch ¼ �0:3750Þ. From the figure it may be seen that ð�0Þcr remains



Fig. 13. Instability strain ð�0Þcr as a function of coating nonhomogeneity ch for the graded coating/homogeneous substrate containing

a weakened interface under fixed-grip compression.

Fig. 14. The influence of the normalized bridging constant as=l1 on the instability strain ð�0Þcr for the weakened interface, h=a ¼ 0:3.
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nearly constant for as=l1 < 10�3 and increases quite rapidly with increasing bridging coefficient for

as=l1 > 10�2.
It should be observed that the results obtained in this study for the weak interface model and shown in

Figs. 13 and 14 are found by solving the corresponding continuum eigenvalue problem. For a fixed value of

the bridging coefficient as=l1, as expected, the ‘‘effective length’’ a is influenced by the spring constant s in
such a way that increasing s corresponds to decreasing effective length.
5.2. Postbuckling analysis

The nonlinear numerical procedure used in the postbuckling analysis of graded coatings was described in

Section 4. The benchmark results for ð�0Þcr were obtained analytically and were discussed in the previous

section (Section 5.1). In this section the critical strain ð�0Þcr is also obtained as the bifurcation point in the

postbuckling analysis. The results obtained from the constant strain loading described in Fig. 1 are shown
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in Figs. 15–18. In the numerical analysis, of necessity, the length l and the thickness hs of the substrate had
to be finite. Thus, the relative dimensions used in the calculations were assumed to be
Fig. 15

instabi

Fig.
hs
hc

¼ 30;
2a
hc

¼ 40;
2l
hc

¼ 200;
where hc is the coating thickness. The test results obtained by varying hs=hc and 2l=hc showed that the

dimensions used were sufficiently large to simulate the semi-infinite medium accurately. Note that similar to

elastica problems in this problem, too, the load-displacement path cannot be determined in a straight-

forward manner by using the incremental-iterative procedure starting from zero external load (see Chiu,
2000 for the numerical solution of the elastica problem and its comparison with the exact solution). To start

the procedure first a small transverse load is applied to the coating at the point x ¼ 0, y ¼ þ0 to induce an

initial crack opening. The load is then removed at a later stage of the incremental loading history to obtain

an equilibrium point in the postbuckling regime for the original problem. Starting from this equilibrium

point the load path is then constructed by using the incremental-iterative technique. For various values of
. Crack opening displacement d=hc at the center of crack as a function of compressive strain �0, the circles on the �0 axis are the

lity strains ð�0Þcr calculated from the analytical stability solution.

16. Strain energy release rate G=G0 as a function of compressive strain �0, G0 ¼ ð1� m2s ÞK2
0=Es, K0 ¼ Es�1

ffiffiffiffiffiffiffi
phc

p
, �1 ¼ 0:002.



Fig. 17. Modes I and II stress intensity factors KI and KII as functions of compressive strain �0, K0 ¼ Es�1
ffiffiffiffiffiffiffi
phc

p
, �1 ¼ 0:002.

Fig. 18. Phase angle as a function of compressive strain �0.
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the coating nonhomogeneity parameter chc the crack opening displacement at x ¼ 0 (defined by d) is shown
in Fig. 15. Note that as �0 is increased d remains zero until a critical loading ð�0Þcr is reached, then the load

path bifurcates. For each value of chc ð�0Þcr obtained from the analytical solution is also shown in the figure

(the small circle). The agreement between the two sets of calculated results appears to be very good. For

chc ¼ 0 the figure also shows the crack opening d obtained from the plate model. The difference between the

plate and the continuum results seems to be rather insignificant. This is due to the relatively small geometric

stiffness parameter ðhc=a ¼ 0:05Þ used in the example. Again, it may be observed that in the postbuckling

regime, too, for a given crack opening the plate model requires a greater compressive strain �0 than the
continuum theory. This is also partly due to the greater end constraints assumed in the plate theory and is

consistent with the results given in Fig. 5.

For the example considered, the dependence of the strain energy release rate G and the stress intensity

factors KI and KII on the external load �0 is shown in Figs. 16 and 17. It may be seen that for �0 < ð�0Þcr G,
KI and KII are zero and for �0 > ð�0Þcr material nonhomogeneity constant chc and �0 have a significant

influence on the fracture mechanics parameters G, KI and KII. By and large the relative trends seem to

conform to intuitively expected results, namely G corresponding to chc ¼ 0 is bracketed by the strain energy

release rates obtained from chc < 0 and chc > 0 and G increases with decreasing coating stiffness chc.
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By examining the results for chc ¼ 0 given in Figs. 15 and 16, it may be seen that d and G predicted by the

plate model for a given �0 are consistently smaller than that obtained from the continuum theory. This,

again, is due to the artificially imposed end constraints in the plate model. From a design viewpoint the

plate model seems to be nonconservative and requires caution in applications. Fig. 17 shows that KII is the
dominant stress intensity component. This may also be seen from Fig. 18 which shows the phase angle wðaÞ
in the postbuckling regime. Relatively high and negative KII implies a strong possibility of crack kinking

towards the free surface. Perhaps a more practical approach to nonplanar crack growth would be either

comparing the calculated G with the mode-mixity-dependent fracture toughness Gc or by using a maximum

stress-based rupture theory at the crack tip region.
6. Concluding remarks

The problems of instability and postbuckling behavior of a graded coating bonded to a homogeneous

substrate with an interface crack or a highly damaged interfacial zone and subjected to uniform in-plane

compressive strain �0 are studied by using a kinematically nonlinear continuum theory and the von Karman

plate model. The shear modulus of the coating is assumed to be lc ¼ ls expðcyÞ, where ls is the modulus of

the substrate and chc is the material nonhomogeneity constant which may be positive or negative. Fol-

lowing are some conclusions:

1. Regardless of the sign and magnitude of chc the critical compressive strain at bifurcation ð�0Þcr is

(approximately) highest for chc ¼ 0.

2. Because of the artificially imposed end constraints, the plate model requires ð�0Þcr that is consistently

greater than that required by the continuum theory for all values of chc and the difference in ð�0Þcr given
by the two theories increases with increasing hc=a.

3. For buckling the interface defect need not be a fully developed crack. Sufficiently small values of the

bridging constant as=l1 and the geometric stiffness parameter hc=a (2a being the size of the flawed zone)

could also lead to buckling.
4. Good agreement is found between the bifurcation points or ð�0Þcr obtained from the analytical solution

of the related eigenvalue problem and from the numerical solution of the postbuckling problem.

5. In the postbuckling regime for a given crack opening the plate model requires greater compressive strain

ð�0Þcr than the continuum theory.

6. For a given value of loading in the postbuckling regime ð�0 > ð�0ÞcrÞ the strain energy release rate and the

crack opening predicted by the plate model are consistently smaller than that obtained from the conti-

nuum theory, implying that generally the results given by the plate model are nonconservative.

7. In the postbuckling regime the mode II stress intensity factor is dominant and negative, implying that the
crack may tend to kink toward the free surface.

Appendix A. The plate model

The plate model described in this appendix and used to obtain the approximate results in this study are

essentially the same as that given by Hutchinson and Suo (1992).

A.1. The stability analysis

In the stability analysis the delaminated part of the graded coating (�a < x < a, 0 < y < h, Figs. 1 and

19) is approximated by a ‘‘plate’’ with built-in ends and is subjected to a uniform compressive strain �0. The
elastic constants of the plate are given by



Fig. 19. Configuration of the column with transformed cross-section.

7176 T.-C. Chiu, F. Erdogan / International Journal of Solids and Structures 40 (2003) 7155–7179
m1 ¼ m2 ¼ m ¼ constant; E�
2ðyÞ ¼ E�

1e
cy ; E�

1 ¼
E1

1� m2
; 0 < y < h; ðA:1Þ
where E1 ¼ 2l1ð1þ mÞ is the Young�s modulus of the substrate (Fig. 1). The analysis is carried out by using

the standard ‘‘Euler-column’’ approach with transformed cross-section technique accounting for the ma-
terial nonhomogeneity. From (A.1) and Fig. 19 the position of the neutral axis and the transformed area

moment of inertia may be determined as
�yy ¼
R
y dA
A

¼
R h
0
yecy dyR h

0
ecy dy

¼ chech � ech þ 1

cðech � 1Þ ; ðA:2Þ

It ¼
Z h

0

ðy � �yyÞ2 dA ¼
Z h

0

ðy � �yyÞ2ecy dy ¼ ðech � 1Þ2 � ðchÞ2ech
c3ðech � 1Þ : ðA:3Þ
The axial-force P corresponding to �0 and the critical buckling load (per unit width) may then be expres-

sed as
P ¼
Z

E�ðyÞ�0 dA ¼
Z h

0

E�
1e

cy�0 dy ¼ E�
1�0ðech � 1Þ=c; ðA:4Þ

Pcr ¼
4p2E�

1It
ð2aÞ2

: ðA:5Þ
From (A.3)–(A.5) it then follows that
ð�0Þcr ¼ p2 h
a

� �2
1

ðchÞ2

"
� 1

ðech þ e�ch � 2Þ

#
; c 6¼ 0: ðA:6Þ
It is seen that for the particular nonhomogeneity considered ð�0Þcr is an even function of the parameter ch.
For the homogeneous plate, that is, for c ¼ 0, it can be shown that
ð�0Þcr ¼
p2

12

h
a

� �2

: ðA:7Þ
A.2. The postbuckling analysis

By following Hutchinson and Suo (1992) the crack problem associated with the postbuckling of coating

is formulated by coupling the von Karman plate with the split-beam approach (Fig. 20). It is assumed that

the crack length 2a and the thickness of the substrate are very large in comparison with the coating

thickness h. The membrane load N and bending moment M acting on the split-beam are obtained by using
the nonlinear von Karman plate formulation. It is assumed that the thermomechanical properties of the



Fig. 20. Geometry of the one dimensional blister: (a) the buckled coating, (b) local loading of interface crack.
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coating E, m and a are known functions of y. The location of the neutral axis and the bending stiffness are

given by
�yy ¼
R h
0
yE�ðyÞdyR h

0
E�ðyÞdy

; E�ðyÞ ¼ EðyÞ
1� m2ðyÞ ; ðA:8Þ

D ¼
Z h

0

E�ðyÞðy � �yyÞ2 dy: ðA:9Þ
The buckling problem may then be formulated as
D
d4v
dx4

þ DN
d2v
dx2

¼ 0; DN ¼ P � N ; ðA:10Þ

vjx¼�a ¼ 0;
dv
dx

����
x¼�a

¼ 0: ðA:11Þ
From (A.10) and (A.11) the deflection and the corresponding lowest eigenvalue (the buckling load) are

found to be
vðxÞ ¼ 1

2
nh 1
�

þ cos
px
a

�
; DN ¼ Pcr ¼

p2D
a2

; ðA:12Þ
where n ¼ vð0Þ=h is the unknown amplitude and is determined by the condition that the membrane stress in

the buckled coating is the same as the buckling stress giving
Z a

�a
�xx dx ¼ 2a

P � Pcr
k

� �
; k ¼

Z h

0

E�ðyÞdy: ðA:13Þ
The nonlinear strain �xx is given by
�xx ¼
1

2

dv
dx

� �2

: ðA:14Þ
From (A.12)–(A.14) it may be shown that
n ¼ vð0Þ
h

¼ 4

h
D
k

P
Pcr

��
� 1

��1=2
: ðA:15Þ
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The bending moment M at x ¼ a and the resultant force N are obtained as
M ¼ D
d2v
dx2

����
x¼a

¼ p2Dh
2a2

n; N ¼ P � Pcr: ðA:16Þ
By using (A.16) from the split-beam solution the strain energy release rate is then found to be
G ¼ P 2

2k
1

�
� Pcr

P

�
1

�
þ 3

Pcr
P

�
: ðA:17Þ
The in-plane compressive load P that appears in (A.15) and (A.17) is dependent on �0 and may be deter-

mined as
P ¼ �
Z h

0

rxx dy ¼
Z h

0

EðyÞ
1� m2ðyÞ �0 dy: ðA:18Þ
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